Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Center of Materials Science and Opto-Electronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
4 National Key Laboratory of Science and Technology on Electronic Test and Measurement, the 41st Research Institute, China Electronics Technology Group Corporation, Qingdao 266555, China
The generation of high-repetition rate (frep ≥ 10 GHz) ultra-broadband optical frequency combs (OFCs) at 1550 nm and 1310 nm is investigated by seeding two types of highly nonlinear fibers (HNLFs) with 10 GHz picosecond pulses at the pump wavelength of 1550 nm. When pumped near the zero dispersion wavelength (ZDW) in the normal dispersion region of a HNLF, 10 GHz flat-topped OFC with 43 nm bandwidth within 5 dB power variation is generated by self-phase modulation (SPM)-based OFC spectral broadening at 26.5 dBm pump power, and 291 fs pulse trains with 10 GHz repetition rate are obtained at 18 dBm pump power without complicated pulse shaping methods. Furthermore, when pumped in the abnormal dispersion region of a HNLF, OFCs with dispersive waves around 1310 nm are studied using a common HNLF and fluorotellurite fibers, which maintain the good coherence of the pump light at 1550 nm. At the same time, sufficient tunability of the generated dispersive waves is achieved when tuning the pump power or ZDW.
optical comb electro-optic devices ultrafast optics optical pulses nonlinear optics 
Opto-Electronic Advances
2020, 3(7): 07190033
黄豆豆 1,2,*邱棋 3林文珍 1,2刘基嫣 1,2[ ... ]赵庆亮 1,2
作者单位
摘要
1 厦门大学公共卫生学院分子影像暨转化医学研究中心, 福建 厦门 361102
2 厦门大学公共卫生学院分子疫苗学和分子诊断学国家重点实验室, 福建 厦门 361102
3 厦门大学医学院, 福建 厦门 361102
随着激光技术、计算机技术与图像处理分析技术的飞速发展, 单一模态的医学影像技术正向一体化、多模态及跨尺度影像技术进行革命性转变。多模态影像技术不仅可以实现对同一生物体进行多角度、多参数及分子层面的结构与功能综合特征信息的提取, 而且可以弥补单一模式存在的局限性与不足, 从而提高疾病早期检测的准确性, 为患者提供更加经济合理、精准有效的诊疗方案, 对提高人们的生活质量具有非常重要的临床意义。本文重点阐述目前光声/超声双模态成像技术在生物医学以及脑相关疾病中的应用及新进展, 系统讨论了该双模态融合技术在未来生物医学领域中的发展前景。
光声/超声双模态成像 多模态成像 生物医学 脑成像 photoacoustic/ultrasound bimodal imaging multimode imaging biomedicine brain imaging 
光散射学报
2019, 31(1): 1

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!